Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification
نویسندگان
چکیده
p53 plays a pivotal role in tumour suppression under stresses, such as DNA damage. ISG15 has been implicated in the control of tumorigenesis. Intriguingly, the expression of ISG15, UBE1L and UBCH8 is induced by DNA-damaging agents, such as ultraviolet and doxorubicin, which are known to induce p53. Here, we show that the genes encoding ISG15, UBE1L, UBCH8 and EFP, have the p53-responsive elements and their expression is induced in a p53-dependent fashion under DNA damage conditions. Furthermore, DNA damage induces ISG15 conjugation to p53 and this modification markedly enhances the binding of p53 to the promoters of its target genes (for example, CDKN1 and BAX) as well as of its own gene by promoting phosphorylation and acetylation, leading to suppression of cell growth and tumorigenesis. These findings establish a novel feedback circuit between p53 and ISG15-conjugating system for positive regulation of the tumour suppressive function of p53 under DNA damage conditions.
منابع مشابه
ISG15 silencing increases cisplatin resistance via activating p53-mediated cell DNA repair
Tumor cells frequently evolved resistance to cisplatin that greatly compromises the efficacy of chemotherapy. Identification of the mechanisms underlying drug resistance is important for developing new therapeutic approaches. ISG15 is found to be elevated in many human carcinomas and cancer cell lines. Here, we identified that the expressions of ISG15 and ISG15-conjugating system were downregul...
متن کاملChemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15.
Identification of the cellular mechanisms that mediate cancer cell chemosensitivity is important for developing new cancer treatment strategies. Several chemotherapeutic drugs increase levels of the posttranslational modifier ISG15, which suggests that ISGylation could suppress oncogenesis. However, how ISGylation of specific target proteins controls tumorigenesis is unknown. Here, we identifie...
متن کاملISG15 Inhibits IFN-α-Resistant Liver Cancer Cell Growth
Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide. Interferon-α (IFN-α) has been widely used in the treatment of HCC, but patients eventually develop resistance. ISG15 ubiquitin-like modifier (ISG15) is a ubiquitin-like protein transcriptionally regulated by IFN-α which shows antivirus and antitumor activities. However, the exact role of ISG15 is unknown. In the prese...
متن کاملMicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response
Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway...
متن کاملOscillations and bistability in the stochastic model of p53 regulation.
The p53 regulatory pathway controls cell responses, which include cell cycle arrest, DNA repair, apoptosis and cellular senescence. We propose a stochastic model of p53 regulation, which is based on two feedback loops: the negative, coupling p53 with its immediate downregulator Mdm2, and the positive, which involves PTEN, PIP3 and Akt. Existence of the negative feedback assures homeostasis of h...
متن کامل